

INTL9555 Product Brief

1. Description

This chip is a 24-pin CMOS device that provides 16 bits of general-purpose parallel input/output (GPIO) expansion for I2C-bus/SMBus applications. The INTL9555 has high drive capability,5V I/O tolerance,lower supply current,individual I/O configuration and smaller packaging.I/O expanders provide a simple solution when additional I/O is needed.

This 16-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 1.65V to 5.5V VCC operation. It provides general-purpose remote I/O expansion for most microcontroller families via the I2C interface. This chip consists of two 8-bit configuration (input or output selection), input port, output port, and polarity inversion registers. At power on, the I/Os are configured as inputs. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output register. The polarity of the Input port register can be inverted with the polarity inversion register.

2. Applications

- IT infrastructure (servers, storages)
- 5g communication
- Network system, including switches and routers

3. Key Features

- The operating power supply voltage range of 1.65V to 5.5V
- 5V tolerant I/Os
- Polarity inversion register
- Active low interrupt output
- Low standby current
- Noise filter on SCL/SDA inputs
- Internal power-on reset
- No glitch on power-up
- 16 I/O pins which default to 16 inputs
- 0 Hz to 400 kHz clock frequency
- The package is TSSOP-24

4. Functional Diagram

Figure 1 Functional Diagram

5. Pin Maps

6. Pin Descriptions

Name	Pin Number	Description
ĪNT	1	Interrupt output. Connect to V_{CC} through a pullup resistor.
A1	2	Address input 1. Connect directly to V _{CC} or ground.
A2	3	Address input 2. Connect directly to V_{CC} or ground.
IO0_0	4	P-port input/output. Push-pull design structure.
IO0_1	5	P-port input/output. Push-pull design structure.
IO0_2	6	P-port input/output. Push-pull design structure.
IO0_3	7	P-port input/output. Push-pull design structure.
IO0_4	8	P-port input/output. Push-pull design structure.
IO0_5	9	P-port input/output. Push-pull design structure.
IO0_6	10	P-port input/output. Push-pull design structure.
IO0_7	11	P-port input/output. Push-pull design structure.
VSS	12	Ground
IO1_0	13	P-port input/output. Push-pull design structure.
IO1_1	14	P-port input/output. Push-pull design structure.
IO1_2	15	P-port input/output. Push-pull design structure.
IO1_3	16	P-port input/output. Push-pull design structure.
IO1_4	17	P-port input/output. Push-pull design structure.
IO1_5	18	P-port input/output. Push-pull design structure.
IO1_6	19	P-port input/output. Push-pull design structure.
IO1_7	20	P-port input/output. Push-pull design structure.
A0	21	Address input 0. Connect directly to V_{CC} or ground.
SCL	22	Serial clock bus. Connect to V_{CC} through a pullup resistor.
SDA	23	Serial data bus. Connect to V_{CC} through a pullup resistor.
VDD	24	Supply voltage

Table 1 Pin Descriptions